A mechanical actuator driven electrochemically by artificial molecular muscles.
نویسندگان
چکیده
A microcantilever, coated with a monolayer of redox-controllable, bistable [3]rotaxane molecules (artificial molecular muscles), undergoes reversible deflections when subjected to alternating oxidizing and reducing electrochemical potentials. The microcantilever devices were prepared by precoating one surface with a gold film and allowing the palindromic [3]rotaxane molecules to adsorb selectively onto one side of the microcantilevers, utilizing thiol-gold chemistry. An electrochemical cell was employed in the experiments, and deflections were monitored both as a function of (i) the scan rate (< or =20 mV s(-1)) and (ii) the time for potential step experiments at oxidizing (>+0.4 V) and reducing (<+0.2 V) potentials. The different directions and magnitudes of the deflections for the microcantilevers, which were coated with artificial molecular muscles, were compared with (i) data from nominally bare microcantilevers precoated with gold and (ii) those coated with two types of control compounds, namely, dumbbell molecules to simulate the redox activity of the palindromic bistable [3]rotaxane molecules and inactive 1-dodecanethiol molecules. The comparisons demonstrate that the artificial molecular muscles are responsible for the deflections, which can be repeated over many cycles. The microcantilevers deflect in one direction following oxidation and in the opposite direction upon reduction. The approximately 550 nm deflections were calculated to be commensurate with forces per molecule of approximately 650 pN. The thermal relaxation that characterizes the device's deflection is consistent with the double bistability associated with the palindromic [3]rotaxane and reflects a metastable contracted state. The use of the cooperative forces generated by these self-assembled, nanometer-scale artificial molecular muscles that are electrically wired to an external power supply constitutes a seminal step toward molecular-machine-based nanoelectromechanical systems (NEMS).
منابع مشابه
A multi-responsive water-driven actuator with instant and powerful performance for versatile applications
Mechanical actuators driven by water that respond to multiple stimuli, exhibit fast responses and large deformations, and generate high stress have potential in artificial muscles, motors, and generators. Meeting all these requirements in a single device remains a challenge. We report a graphene monolayer paper that undergoes reversible deformation. Its graphene oxide cells wrinkle and extend i...
متن کاملMolecular , Supra molecular , and Macromolecular Motors and Artificial Muscles
Recent developments in chemical synthesis, nanoscale assembly, and molecularscale measurements enable the extension of the concept of macroscopic machines to the molecular and supramolecular levels. Molecular machines are capable of performing mechanical movements in response to external stimuli. They offer the potential to couple electrical or other forms of energy to mechanical action at the ...
متن کاملActive Polymer Gel Actuators
Many kinds of stimuli-responsive polymer and gels have been developed and applied to biomimetic actuators or artificial muscles. Electroactive polymers that change shape when stimulated electrically seem to be particularly promising. In all cases, however, the mechanical motion is driven by external stimuli, for example, reversing the direction of electric field. On the other hand, many living ...
متن کاملFuel-powered artificial muscles.
Artificial muscles and electric motors found in autonomous robots and prosthetic limbs are typically battery-powered, which severely restricts the duration of their performance and can necessitate long inactivity during battery recharge. To help solve these problems, we demonstrated two types of artificial muscles that convert the chemical energy of high-energy-density fuels to mechanical energ...
متن کاملEmpirical Modeling of Pneumatic Artificial Muscle
Pneumatic Artificial Muscle (PAM) yields natural muscle-like actuator with high force to weight ratio, soft and flexible structure, and adaptable compliance for rehabilitation and prosthetic appliances to the disabled. To obtain optimum design and usage, there is significance to understand mechanical behavior of the PAM. In this study, experimental results reveal empirical modeling for relation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ACS nano
دوره 3 2 شماره
صفحات -
تاریخ انتشار 2009